Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nat Commun ; 15(1): 3530, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664422

ABSTRACT

This paper explicates a solution to building correspondences between molecular-scale transcriptomics and tissue-scale atlases. This problem arises in atlas construction and cross-specimen/technology alignment where specimens per emerging technology remain sparse and conventional image representations cannot efficiently model the high dimensions from subcellular detection of thousands of genes. We address these challenges by representing spatial transcriptomics data as generalized functions encoding position and high-dimensional feature (gene, cell type) identity. We map onto low-dimensional atlas ontologies by modeling regions as homogeneous random fields with unknown transcriptomic feature distribution. We solve simultaneously for the minimizing geodesic diffeomorphism of coordinates through LDDMM and for these latent feature densities. We map tissue-scale mouse brain atlases to gene-based and cell-based transcriptomics data from MERFISH and BARseq technologies and to histopathology and cross-species atlases to illustrate integration of diverse molecular and cellular datasets into a single coordinate system as a means of comparison and further atlas construction.


Subject(s)
Atlases as Topic , Brain , Transcriptome , Animals , Brain/metabolism , Mice , Transcriptome/genetics , Image Processing, Computer-Assisted/methods , Gene Expression Profiling/methods , Humans
2.
Oncologist ; 29(4): e514-e525, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38297981

ABSTRACT

PURPOSE: This first-in-human phase I dose-escalation study evaluated the safety, pharmacokinetics, and efficacy of tinengotinib (TT-00420), a multi-kinase inhibitor targeting fibroblast growth factor receptors 1-3 (FGFRs 1-3), Janus kinase 1/2, vascular endothelial growth factor receptors, and Aurora A/B, in patients with advanced solid tumors. PATIENTS AND METHODS: Patients received tinengotinib orally daily in 28-day cycles. Dose escalation was guided by Bayesian modeling using escalation with overdose control. The primary objective was to assess dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), and dose recommended for dose expansion (DRDE). Secondary objectives included pharmacokinetics and efficacy. RESULTS: Forty-eight patients were enrolled (dose escalation, n = 40; dose expansion, n = 8). MTD was not reached; DRDE was 12 mg daily. DLTs were palmar-plantar erythrodysesthesia syndrome (8 mg, n = 1) and hypertension (15 mg, n = 2). The most common treatment-related adverse event was hypertension (50.0%). In 43 response-evaluable patients, 13 (30.2%) achieved partial response (PR; n = 7) or stable disease (SD) ≥ 24 weeks (n = 6), including 4/11 (36.4%) with FGFR2 mutations/fusions and cholangiocarcinoma (PR n = 3; SD ≥ 24 weeks n = 1), 3/3 (100.0%) with hormone receptor (HR)-positive/HER2-negative breast cancer (PR n = 2; SD ≥ 24 weeks n = 1), 2/5 (40.0%) with triple-negative breast cancer (TNBC; PR n = 1; SD ≥ 24 weeks n = 1), and 1/1 (100.0%) with castrate-resistant prostate cancer (CRPC; PR). Four of 12 patients (33.3%; HR-positive/HER2-negative breast cancer, TNBC, prostate cancer, and cholangiocarcinoma) treated at DRDE had PRs. Tinengotinib's half-life was 28-34 hours. CONCLUSIONS: Tinengotinib was well tolerated with favorable pharmacokinetic characteristics. Preliminary findings indicated potential clinical benefit in FGFR inhibitor-refractory cholangiocarcinoma, HER2-negative breast cancer (including TNBC), and CRPC. Continued evaluation of tinengotinib is warranted in phase II trials.


Subject(s)
Antineoplastic Agents , Cholangiocarcinoma , Hypertension , Neoplasms , Prostatic Neoplasms, Castration-Resistant , Triple Negative Breast Neoplasms , Male , Humans , Triple Negative Breast Neoplasms/drug therapy , Bayes Theorem , Prostatic Neoplasms, Castration-Resistant/drug therapy , Vascular Endothelial Growth Factor A , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/adverse effects , Cholangiocarcinoma/drug therapy , Hypertension/chemically induced , Maximum Tolerated Dose
3.
Brain Behav Immun ; 116: 160-174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070624

ABSTRACT

Acute cerebral ischemia triggers a profound inflammatory response. While macrophages polarized to an M2-like phenotype clear debris and facilitate tissue repair, aberrant or prolonged macrophage activation is counterproductive to recovery. The inhibitory immune checkpoint Programmed Cell Death Protein 1 (PD-1) is upregulated on macrophage precursors (monocytes) in the blood after acute cerebrovascular injury. To investigate the therapeutic potential of PD-1 activation, we immunophenotyped circulating monocytes from patients and found that PD-1 expression was upregulated in the acute period after stroke. Murine studies using a temporary middle cerebral artery (MCA) occlusion (MCAO) model showed that intraperitoneal administration of soluble Programmed Death Ligand-1 (sPD-L1) significantly decreased brain edema and improved overall survival. Mice receiving sPD-L1 also had higher performance scores short-term, and more closely resembled sham animals on assessments of long-term functional recovery. These clinical and radiographic benefits were abrogated in global and myeloid-specific PD-1 knockout animals, confirming PD-1+ monocytes as the therapeutic target of sPD-L1. Single-cell RNA sequencing revealed that treatment skewed monocyte maturation to a non-classical Ly6Clo, CD43hi, PD-L1+ phenotype. These data support peripheral activation of PD-1 on inflammatory monocytes as a therapeutic strategy to treat neuroinflammation after acute ischemic stroke.


Subject(s)
Brain Edema , Ischemic Stroke , Humans , Mice , Animals , Monocytes/metabolism , Brain Edema/metabolism , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Infarction, Middle Cerebral Artery/metabolism
4.
Nat Commun ; 14(1): 8123, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065970

ABSTRACT

Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we develop STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit at https://github.com/JEFworks-Lab/STalign and as Supplementary Software with additional documentation and tutorials available at https://jef.works/STalign .


Subject(s)
Gene Expression Profiling , Software , Animals , Mice , Brain , Technology
5.
Sci Rep ; 13(1): 20888, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017015

ABSTRACT

T cells are important in the pathogenesis of acute kidney injury (AKI), and TCR+CD4-CD8- (double negative-DN) are T cells that have regulatory properties. However, there is limited information on DN T cells compared to traditional CD4+ and CD8+ cells. To elucidate the molecular signature and spatial dynamics of DN T cells during AKI, we performed single-cell RNA sequencing (scRNA-seq) on sorted murine DN, CD4+, and CD8+ cells combined with spatial transcriptomic profiling of normal and post AKI mouse kidneys. scRNA-seq revealed distinct transcriptional profiles for DN, CD4+, and CD8+ T cells of mouse kidneys with enrichment of Kcnq5, Klrb1c, Fcer1g, and Klre1 expression in DN T cells compared to CD4+ and CD8+ T cells in normal kidney tissue. We validated the expression of these four genes in mouse kidney DN, CD4+ and CD8+ T cells using RT-PCR and Kcnq5, Klrb1, and Fcer1g genes with the NIH human kidney precision medicine project (KPMP). Spatial transcriptomics in normal and ischemic mouse kidney tissue showed a localized cluster of T cells in the outer medulla expressing DN T cell genes including Fcer1g. These results provide a template for future studies in DN T as well as CD4+ and CD8+ cells in normal and diseased kidneys.


Subject(s)
Acute Kidney Injury , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Transcriptome , CD8 Antigens/metabolism , CD4 Antigens/metabolism , Kidney/metabolism , Acute Kidney Injury/pathology , Receptors, Antigen, T-Cell, alpha-beta/metabolism
6.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693542

ABSTRACT

Recent advances in imaging-based spatially resolved transcriptomics (im-SRT) technologies now enable high-throughput profiling of targeted genes and their locations in fixed tissues. Normalization of gene expression data is often needed to account for technical factors that may confound underlying biological signals. Here, we investigate the potential impact of different gene count normalization methods with different targeted gene panels in the analysis and interpretation of im-SRT data. Using different simulated gene panels that overrepresent genes expressed in specific tissue anatomical regions or cell types, we find that normalization methods that use scaling factors derived from gene counts differentially impact normalized gene expression magnitudes in a region- or cell type-specific manner. We show that these normalization-induced effects may reduce the reliability of downstream differential gene expression and fold change analysis, introducing false positive and false negative results when compared to results obtained from gene panels that are more representative of the gene expression of the tissue's component cell types. These effects are not observed without normalization or when scaling factors are not derived from gene counts, such as with cell volume normalization. Overall, we caution that the choice of normalization method and gene panel may impact the biological interpretation of the im-SRT data.

7.
Nature ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106102
8.
bioRxiv ; 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37090640

ABSTRACT

Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we developed STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit at https://github.com/JEFworks-Lab/STalign and as supplementary software with additional documentation and tutorials available at https://jef.works/STalign.

9.
bioRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034802

ABSTRACT

This paper explicates a solution to the problem of building correspondences between molecular-scale transcriptomics and tissue-scale atlases. The central model represents spatial transcriptomics as generalized functions encoding molecular position and high-dimensional transcriptomic-based (gene, cell type) identity. We map onto low-dimensional atlas ontologies by modeling each atlas compartment as a homogeneous random field with unknown transcriptomic feature distribution. The algorithm presented solves simultaneously for the minimizing geodesic diffeomorphism of coordinates and latent atlas transcriptomic feature fractions by alternating LDDMM optimization for coordinate transformations and quadratic programming for the latent transcriptomic variables. We demonstrate the universality of the algorithm in mapping tissue atlases to gene-based and cell-based MERFISH datasets as well as to other tissue scale atlases. The joint estimation of diffeomorphisms and latent feature distributions allows integration of diverse molecular and cellular datasets into a single coordinate system and creates an avenue of comparison amongst atlas ontologies for continued future development.

10.
Nat Commun ; 13(1): 2339, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35487922

ABSTRACT

Recent technological advancements have enabled spatially resolved transcriptomic profiling but at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific spatial patterns and gene expression variation. To address this challenge, we develop STdeconvolve as a reference-free approach to deconvolve underlying cell types comprising such multi-cellular pixel resolution spatial transcriptomics (ST) datasets. Using simulated as well as real ST datasets from diverse spatial transcriptomics technologies comprising a variety of spatial resolutions such as Spatial Transcriptomics, 10X Visium, DBiT-seq, and Slide-seq, we show that STdeconvolve can effectively recover cell-type transcriptional profiles and their proportional representation within pixels without reliance on external single-cell transcriptomics references. STdeconvolve provides comparable performance to existing reference-based methods when suitable single-cell references are available, as well as potentially superior performance when suitable single-cell references are not available. STdeconvolve is available as an open-source R software package with the source code available at https://github.com/JEFworks-Lab/STdeconvolve .


Subject(s)
Gene Expression Profiling , Transcriptome , Software , Transcriptome/genetics
12.
Bioinformatics ; 38(2): 391-396, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34500455

ABSTRACT

MOTIVATION: Single-cell transcriptomics profiling technologies enable genome-wide gene expression measurements in individual cells but can currently only provide a static snapshot of cellular transcriptional states. RNA velocity analysis can help infer cell state changes using such single-cell transcriptomics data. To interpret these cell state changes inferred from RNA velocity analysis as part of underlying cellular trajectories, current approaches rely on visualization with principal components, t-distributed stochastic neighbor embedding and other 2D embeddings derived from the observed single-cell transcriptional states. However, these 2D embeddings can yield different representations of the underlying cellular trajectories, hindering the interpretation of cell state changes. RESULTS: We developed VeloViz to create RNA velocity-informed 2D and 3D embeddings from single-cell transcriptomics data. Using both real and simulated data, we demonstrate that VeloViz embeddings are able to capture underlying cellular trajectories across diverse trajectory topologies, even when intermediate cell states may be missing. By considering the predicted future transcriptional states from RNA velocity analysis, VeloViz can help visualize a more reliable representation of underlying cellular trajectories. AVAILABILITY AND IMPLEMENTATION: Source code is available on GitHub (https://github.com/JEFworks-Lab/veloviz) and Bioconductor (https://bioconductor.org/packages/veloviz) with additional tutorials at https://JEF.works/veloviz/. Datasets used can be found on Zenodo (https://doi.org/10.5281/zenodo.4632471). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA , Software , Gene Expression Profiling , Genome , Sequence Analysis, RNA
13.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Article in English | MEDLINE | ID: mdl-34605044

ABSTRACT

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Congresses as Topic/trends , Embryonic Development/physiology , Research Report , Single-Cell Analysis/trends , Animals , Cell Lineage/physiology , Humans , Macrophages/physiology , Single-Cell Analysis/methods
14.
Neuron ; 109(20): 3239-3251.e7, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34478631

ABSTRACT

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.


Subject(s)
Brain/embryology , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Animals , Biological Evolution , Epigenomics , Evolution, Molecular , Ferrets , Humans , Macaca , Mice , Pan troglodytes
16.
Cancer Cell ; 39(6): 779-792.e11, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34087162

ABSTRACT

The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , T-Lymphocytes/immunology , Tumor-Associated Macrophages/immunology , Animals , Brain Neoplasms/genetics , Cells, Cultured , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Cytotoxicity, Immunologic , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Oncostatin M/metabolism , Oncostatin M Receptor beta Subunit/genetics , Oncostatin M Receptor beta Subunit/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/pathology
17.
Genome Res ; 31(10): 1843-1855, 2021 10.
Article in English | MEDLINE | ID: mdl-34035045

ABSTRACT

Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into consideration the inherent 3D spatial organization of cell types and nonuniform cellular densities within tissues are still lacking. To address this, we developed MERINGUE, a computational framework based on spatial autocorrelation and cross-correlation analysis to identify genes with spatially heterogeneous expression patterns, infer putative cell-cell communication, and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially resolved transcriptomic data. We applied MERINGUE to a variety of spatially resolved transcriptomic data sets including multiplexed error-robust fluorescence in situ hybridization (MERFISH), spatial transcriptomics, Slide-seq, and aligned in situ hybridization (ISH) data. We anticipate that such statistical analysis of spatially resolved transcriptomic data will facilitate our understanding of the interplay between cell state and spatial organization in tissue development and disease.


Subject(s)
Single-Cell Analysis , Transcriptome , Gene Expression Profiling/methods , In Situ Hybridization, Fluorescence/methods , Single-Cell Analysis/methods
18.
Exp Mol Med ; 52(9): 1452-1465, 2020 09.
Article in English | MEDLINE | ID: mdl-32929226

ABSTRACT

Intratumor heterogeneity is a common characteristic across diverse cancer types and presents challenges to current standards of treatment. Advancements in high-throughput sequencing and imaging technologies provide opportunities to identify and characterize these aspects of heterogeneity. Notably, transcriptomic profiling at a single-cell resolution enables quantitative measurements of the molecular activity that underlies the phenotypic diversity of cells within a tumor. Such high-dimensional data require computational analysis to extract relevant biological insights about the cell types and states that drive cancer development, pathogenesis, and clinical outcomes. In this review, we highlight emerging themes in the computational analysis of single-cell transcriptomics data and their applications to cancer research. We focus on downstream analytical challenges relevant to cancer research, including how to computationally perform unified analysis across many patients and disease states, distinguish neoplastic from nonneoplastic cells, infer communication with the tumor microenvironment, and delineate tumoral and microenvironmental evolution with trajectory and RNA velocity analysis. We include discussions of challenges and opportunities for future computational methodological advancements necessary to realize the translational potential of single-cell transcriptomic profiling in cancer.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Neoplasms/genetics , Single-Cell Analysis/methods , Transcriptome , Biomarkers, Tumor , Cell Communication/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplasm Grading , Neoplasms/pathology , Organ Specificity/genetics , Sequence Analysis, RNA , Tumor Microenvironment/genetics
19.
Nat Methods ; 16(12): 1289-1296, 2019 12.
Article in English | MEDLINE | ID: mdl-31740819

ABSTRACT

The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony (https://github.com/immunogenomics/harmony), an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological factors. In six analyses, we demonstrate the superior performance of Harmony to previously published algorithms while requiring fewer computational resources. Harmony enables the integration of ~106 cells on a personal computer. We apply Harmony to peripheral blood mononuclear cells from datasets with large experimental differences, five studies of pancreatic islet cells, mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data.


Subject(s)
Single-Cell Analysis/methods , Algorithms , Animals , Base Sequence , Datasets as Topic , HEK293 Cells , Humans , Jurkat Cells , Mice
20.
Proc Natl Acad Sci U S A ; 116(39): 19490-19499, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501331

ABSTRACT

The expression profiles and spatial distributions of RNAs regulate many cellular functions. Image-based transcriptomic approaches provide powerful means to measure both expression and spatial information of RNAs in individual cells within their native environment. Among these approaches, multiplexed error-robust fluorescence in situ hybridization (MERFISH) has achieved spatially resolved RNA quantification at transcriptome scale by massively multiplexing single-molecule FISH measurements. Here, we increased the gene throughput of MERFISH and demonstrated simultaneous measurements of RNA transcripts from ∼10,000 genes in individual cells with ∼80% detection efficiency and ∼4% misidentification rate. We combined MERFISH with cellular structure imaging to determine subcellular compartmentalization of RNAs. We validated this approach by showing enrichment of secretome transcripts at the endoplasmic reticulum, and further revealed enrichment of long noncoding RNAs, RNAs with retained introns, and a subgroup of protein-coding mRNAs in the cell nucleus. Leveraging spatially resolved RNA profiling, we developed an approach to determine RNA velocity in situ using the balance of nuclear versus cytoplasmic RNA counts. We applied this approach to infer pseudotime ordering of cells and identified cells at different cell-cycle states, revealing ∼1,600 genes with putative cell cycle-dependent expression and a gradual transcription profile change as cells progress through cell-cycle stages. Our analysis further revealed cell cycle-dependent and cell cycle-independent spatial heterogeneity of transcriptionally distinct cells. We envision that the ability to perform spatially resolved, genome-wide RNA profiling with high detection efficiency and accuracy by MERFISH could help address a wide array of questions ranging from the regulation of gene expression in cells to the development of cell fate and organization in tissues.


Subject(s)
Gene Expression Profiling/methods , Intracellular Space/diagnostic imaging , RNA, Messenger/analysis , Cell Division/genetics , Cell Line, Tumor , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Genes, cdc/genetics , Humans , In Situ Hybridization, Fluorescence/methods , RNA, Long Noncoding/analysis , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...